Quiz 3

January 25, 2017

Show all work and circle your final answer.

1. Set up, but **do not evaluate**, an integral that represents the area between the curves $y = x^2 + 4x$ and $30 - x^2$.

$$A = \int_{-5}^{3} (30 - x^2) - (x^2 + 4x) dx$$

INTERSECT:

$$x^2 + 4x = 30 - x^2$$

$$2x^2+4x-30=0$$

$$x^2 + 2x - 15 = 0$$

$$(x+5)(x-3)=0$$

2. Set up, but **do not evaluate**, an integral that represents the volume of the solid of revolution obtained by revolving the area bounded by $y = x^2$, y = 4, x = 0, and x = 1 about the line

$$R = \text{distance from } y = 4 \text{ to } y = -1$$

$$= 5$$

$$- \rightarrow y = -1$$

$$= x^{2} + 1$$

$$R = \text{distance from } y = 4 \text{ to } y = -1$$

$$= 5$$

$$= x^{2} + 1$$

$$V = \pi \int_{0}^{1} (5)^{2} - (x^{2} + 1)^{2} dx$$

3. A solid S has a circular base in the xy-plane given by $x^2 + y^2 = 4$, and the cross-sections of S parallel to the x-axis are squares. Write an integral representing the volume of S. Do not evaluate the integral.

$$V = \int_{-2}^{2} (2\sqrt{4-y^2})^2 dy$$